

Pradley Sisenwain Lighting / Electrical Dption Faculty Advisur: Dr. Houser

Bateway Community College
New Haven, LT
September 29, 20108

Technital Report II

Gateway Community College is a consolidation of twa existing campuses inta one facility in downtown New Haven, Connecticut. CC is a $369,0 \mathrm{OH} \mathrm{ft}^{2}$ building and is mainly made up of classroam and office space. This report will review and summarize the distribution system within the education facility and define its various attributes.

With the information provided from the normal and emergency riser diagrams (prepared by BVH Integrated Services, Inc.) I prepared a single line diagram to represent how power would be distributed throughout the building. Equipment location tables, panelboard tables, transformer schedules, and loading calculations support the information presented on the single line and are also included in the body of this report.

Additional information (such as the specifications and plan drawings) was used to summarize the special equipment, environmental stewardship design, design issues, and communication system used in ㄷСГ.

Table Of Contents Sateway Community College Technical Report II

Section Dne: Single Line Diagram 1
Single Line Diagram Drawing List
Figure 1.: Single Line Diagram North Tower 2
Figure 1.2: Single Line Diagram South Tower 3
Figure 1.3: Feeder Schedule 4
Figure 1.4: Normal Power Riser Diagram E-301 5
Figure 1.5: Emergency Power Riser Diagram E-302 6
Section Twa: Distribution System 7
Summary Description of Distribution System 7
Utility Company Information. 7
Service Entrance 9
Voltage Systems 9
Emergency Power Systems 9
Locations of Switchgear 9
Dvercurrent Devices 9
Transformers 14-15
Special Equipment 15
Lighting Laads. 18-17
Mechanical Laads 18-21
Service Entrance Size 21-22
Environmental Stewardship Design 23
Design Issues. 23
Communication Systems 23
Appendix A: HID Ballast Lut Sheets 24
Appendix B: Citations 30

Section Dne:	Single Line Diagram

Single Line Diagram Drawing List	
Drawing Title	Sheet Number
Normal Power Distribution Riser Diagram	E-301
Emergency Power Distribution Riser Diagram	E-302

Please see Figures 1., 1.2, 1.3, 1.4 and I.5 for Single Line Diagram, Feeder Schedule, and Riser Diagrams.

FEEDER SCHEDULE																				
TYPE	TAG	FROM	то	NO. OF SETS	CONDUIT (PER SET)		PHASE CONDUCTORS			CONDUCTORS (PER SET)			GROUND CONDUCTORS			SIZE OF OVERCURRENT PROTECTION	$\begin{gathered} \text { FRAME OR } \\ \text { SWITCH } \\ \text { SIZE } \end{gathered}$			
								EUTRAL C	NDUCTORS											
					SIZE	TYPE				No.	SIZE	TYPE	No.	SIZE	TYPE			No.	SIZE	TYPE
1	A	MSBBS	JPC	1	$1{ }^{\prime \prime}$	EMT	3	\#10 AWG	CU THHN/THWN	1	\#10 AWG	CU THHN/THWN	1	\#10 AWG	CU THHN/THWN	50A	50A/3P			
1	B	JPC	JP	1	1"	EMT	3	\#10 AWG	CU THHN/THWN	0	N/A	CUTHHN/THWN	1	\#10 AWG	CU THHN/THWN	50A	50A/3P			
2	A	EMHDPBN2	ELPBN2	1	1"	EMT	3	\#8 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	1	\#10 AWG	CU THHN/THWN	50A	50A/3P			
2	B	EMHDPBN2	ELP2S	1	1"	EMT	3	\#8 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	1	\#10 AWG	CUTHHN/THWN	50A	50A/3P			
2	C	EMHDPBN2	ELP4S	1	1"	EMT	3	\#8 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	1	\#10 AWG	CU THHN/THWN	50A	50A/3P			
2	D	EMHDPBN2	ELHP1S1	1	1"	EMT	3	\#8 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	1	\#10 AWG	CU THHN/THWN	50A	50A/3P			
2	E	EMHDPBN	ELHP1N1	1	1"	EMT	3	\#8 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	1	\#10 AWG	CU THHN/THWN	50A	50A/3P			
2	F	EMHDPBN	ELHPBPG	1	1"	EMT	3	\#8 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	1	\#10 AWG	CU THHN/THWN	50A	50A/3P			
2	G	ELHPBPG	ELHP4PG	1	1"	EMT	3	\#8 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	1	\#10 AWG	CUTHHN/THWN	50A	50A/3P			
2	H	TXELPBN	ELPBN	1	1"	EMT	3	\#8 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	1	\#10 AWG	CU THHN/THWN	50A	50A/3P			
2		TXELPBN	ELP2N	1	1"	EMT	3	\#8 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	1	\#10 AWG	CU THHN/THWN	50A	50A/3P			
2	J	TXELPBN	ELP4N	1	1"	EMT	3	\#8 AWG	CU THHN/THWN	1	\#8 AWG	CUTHHN/THWN	1	\#10 AWG	CUTHHN/THWN	50A	50A/3P			
2	K	GDPN1	GPBP	1	1"	EMT	3	\#8 AWG	CU THHN/THWN	1	\#8 AWG	CUTHHN/THWN	1	\#10 AWG	CUTHHN/THWN	50A	50A/3P			
2	L	HDPBN2	HLPBN2	1	$1^{\prime \prime}$	EMT	3	\#8 AWG	CU THHN/THWN	1	\#8 AWG	CUTHHN/THWN	1	\#10 AWG	CUTHHN/THWN	50A	50A/3P			
3	A	EMHDPBN2	ELHP2S	1	11/4"	EMT	3	\#6 AWG	CU THHN/THWN	1	\#6 AWG	CU THHN/THWN	1	\#10 AWG	CU THHN/THWN	100A	100A/3P			
3	B	EMHDPBN2	ELHP3S	1	11/4"	EMT	3	\#6 AWG	CU THHN/THWN	1	\#6 AWG	CU THHN/THWN	1	\#10 AWG	CU THHN/THWN	100A	100A/3P			
3	C	EMHDPBN2	ELHP4S	1	11/4"	EMT	3	\#6 AWG	CU THHN/THWN	1	\#6 AWG	CUTHHN/THWN	1	\#10 AWG	CUTHHN/THWN	100A	100A/3P			
3	D	EMHDPBN	ELHP2N	1	11/4"	EMT	3	\#6 AWG	CU THHN/THWN	1	\#6 AWG	CU THHN/THWN	1	\#10 AWG	CU THHN/THWN	100A	100A/3P			
3	E	EMHDPBN	ELHP3N	1	11/4"	EMT	3	\#6 AWG	CU THHN/THWN	1	\#6 AWG	CU THHN/THWN	1	\#10 AWG	CU THHN/THWN	100A	100A/3P			
3	F	EMHDPBN	ELHP4N	1	11/4"	EMT	3	\#6 AWG	CU THHN/THWN	1	\#6 AWG	CUTHHN/THWN	1	\#10 AWG	CUTHHN/THWN	100A	100A/3P			
5	A	MSBBN	CT2	1	11/4"	EMT	3	\#4 AWG	CU THHN/THWN	1	\#4 AWG	CU THHN/THWN	1	\#6 AWG	CU THHN/THWN	100A	100A/3P			
5	B	HDP1S2	PE7	1	11/4"	EMT	3	\#4 AWG	CU THHN/THWN	1	\#4 AWG	CUTHHN/THWN	1	\#6 AWG	CUTHHN/THWN	100A	100A/3P			
7	A	USW1	UX1	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CU THHN/THWN	1	\#8 AWG	CUTHHN/THWN	100A	150A/3P			
7	B	SATS2	MSBBS	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	100A	150A/3P			
7	C	SATS2	EMHDPBN2	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CUTHHN/THWN	1	\#8 AWG	CUTHHN/THWN	100A	150A/3P			
7	D	EMHDPBN2	EHLBN2	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CU THHN/THWN	1	\#8 AWG	CUTHHN/THWN	100A	150A/3P			
7	E	EMHDPBN2	UPS	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CUTHHN/THWN	1	\#8 AWG	CUTHHN/THWN	100A	150A/3P			
7	F	MSBBN	AHU3	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	100A	150A/3P			
7	GO	MSBBN	AHU4	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	1/0	CUTHHN/THWN	1	\#4 AWG	CUTHHN/THWN	100A	150A/3P			
7	H	MSBBN	HLPBN1	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CUTHHN/THWN	1	\#8 AWG	CUTHHN/THWN	100A	150A/3P			
7	1	GP2N	GPGCL2N	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CUTHHN/THWN	1	\#8 AWG	CUTHHN/THWN	100A	150A/3P			
7	J	HDP1N	KP1N	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CUTHHN/THWN	1	\#8 AWG	CUTHHN/THWN	100A	150A/3P			
7	K	GDPN1	GPMWS	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CUTHHN/THWN	1	\#8 AWG	CUTHHN/THWN	100A	150A/3P			
7	L	GDPN1	LPME	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	100A	150A/3P			
7	M	HDP1S1	HLP1S1	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CUTHHN/THWN	1	\#8 AWG	CUTHHN/THWN	100A	150A/3P			
7	N	HDP1S1	TXMKP2	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CUTHHN/THWN	1	\#8 AWG	CUTHHN/THWN	100A	150A/3P			
7	0	HDP2S1	HLP1S1	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	100A	150A/3P			
7	P	HDP3S1	HLP3S1	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CUTHHN/THWN	1	\#8 AWG	CUTHHN/THWN	100A	150A/3P			
7	Q	HDP4S1	HLP4S1	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CUTHHN/THWN	1	\#8 AWG	CUTHHN/THWN	100A	150A/3P			
7	R	TXGP4S1	GP4SSL	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	100A	150A/3P			
7	S	HDP4S2	HLP4S2	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CU THHN/THWN	1	\#8 AWG	CUTHHN/THWN	100A	150A/3P			
7	T	HDP3S2	HLP3S2	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CUTHHN/THWN	1	\#8 AWG	CUTHHN/THWN	100A	150A/3P			
7	U	HDP2S2	HLP2S2	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	100A	150A/3P			
7	V	GP2S2	GPGCL2S	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	100A	150A/3P			
7	WO	MSBBS	AHU2	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	1/0	CU THHN/THWN	1	\#4 AWG	CU THHN/THWN	100A	100A/3P			
7	XO	MSBBS	AHU2	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	1/0	CU THHN/THWN	1	\#4 AWG	CU THHN/THWN	100A	100A/3P			
7	Y	HDP1S2	HLP1S2	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CU THHN/THWN	1	\#8 AWG	CU THHN/THWN	100A	100A/3P			
7	Z	HDP1S2	TXDKPS1	1	11/2"	EMT	3	\#2 AWG	CU THHN/THWN	1	\#2 AWG	CUTHHN/THWN	1	\#8 AWG	CU THHN/THWN	100A	100A/3P			
8	AO	MSBBS	PV1	1	$2{ }^{\prime \prime}$	EMT	3	\#2 AWG	CU THHN/THWN	1	$2 / 0$	CU THHN/THWN	1	\#3 Aawg	CU THHN/THWN	100A	100A/3P			
8	BO	MSBBS	PV2	1	$2^{\prime \prime}$	EMT	3	\#2 AWG	CU THHN/THWN	1	210	CUTHHN/THWN	1	\#3 Aawg	CUTHHN/THWN	100A	100A/3P			
9	AO	HDPPG	HLP4PG	1	$2^{\prime \prime}$	EMT	3	\#1 AWG	CU THHN/THWN	1	3/0	CUTHHN/THWN	1	\#2 AWG	CUTHHN/THWN	110A	150A/3P			
9	B	MSBBN	AHU3	1	2"	EMT	3	\#1 AWG	CU THHN/THWN	1	\#1 AWG	CUTHHN/THWN	1	\#6 AWG	CUTHHN/THWN	110A	150A/3P			
9	CO	MSBBN	AHU4	1	2"	EMT	3	\#1 AWG	CU THHN/THWN	1	3/0	CUTHHN/THWN	1	\#2 AWG	CUTHHN/THWN	110A	150A/3P			
9	D	HDP4N	HLP4N	1	2"	EMT	3	\#1 AWG	CU THHN/THWN	1	\#1 AWG	CUTHHN/THWN	1	\#6 AWG	CUTHHN/THWN	110A	150A/3P			
9	E	HDP3N	HLP3N	1	2"	EMT	3	\#1 AWG	CU THHN/THWN	1	\#1 AWG	CUTHHN/THWN	1	\#6 AWG	CUTHHN/THWN	110A	150A/3P			
9	F	HDP2N	HLP2N	1	2"	EMT	3	\#1 AWG	CU THHN/THWN	1	\#1 AWG	CU THHN/THWN	1	\#6 AWG	CU THHN/THWN	110A	150A/3P			
9	G	HDP1N	HLP1N	1	2"	EMT	3	\#1 AWG	CU THHN/THWN	1	\#1 AWG	CU THHN/THWN	1	\#6 AWG	CU THHN/THWN	110A	150A/3P			
9	HO	MSBBS	AHU2	1	2"	EMT	3	\#1 AWG	CU THHN/THWN	1	3/0	CU THHN/THWN	1	\#2 AWG	CU THHN/THWN	110A	100A/3P			
9	10	MSBBS	AHU3	1	2"	EMT	3	\#1 AWG	CU THHN/THWN	1	3/0	CU THHN/THWN		\#2 AWG	CU THHN/THWN	110A	100A/3P			

FEEDER SCHEDULE																	
TYPE	TAG	FROM	то	NO. OF SETS	$\begin{aligned} & \hline \text { CONDUIT } \\ & \text { (PER SET) } \\ & \hline \end{aligned}$		PHASE CONDUCTORS			CONDUCTORS (PER SET)			GROUND CONDUCTORS			SIZE OF OVERCURRENT PROTECTION	FRAME ORSWITCHSIZE
					SIZE	TYPE	No.	SIZE	TYPE	No.	SIZE	TYPE	No.	SIZE	TYPE		
10	AO	MSBBN	CT1	1	$2^{\prime \prime}$	EMT	3	1/0	CUTHHN/THWN	1	4/0	CU THHN/THWN	1	\#2 AWG	CU THHN/THWN	150A	150A/3P
10	B	MSBBN	CT1	1	2"	EMT	3	1/0	CU THHN/THWN	1	1/0	CU THHN/THWN	1	\#6 AWG	CU THHN/THWN	150A	150A/3P
11	A	TXGP4S1	GP4S1	1	21/2"	EMT	3	2/0	CU THHN/THWN	1	$2 / 0$	CU THHN/THWN	1	\#6 AWG	CU THHN/THWN	200A	200A/3P
12	A	USW1	UX2	1	21/2"	EMT	3	3/0	CU THHN/THWN	1	3/0	CU THHN/THWN	1	\#6 AWG	CU THHN/THWN	200A	200A/3P
12	B	USW1	UX2	1	$21 / 2^{\prime \prime}$	EMT	3	3/0	CU THHN/THWN	1	3/0	CUTHHN/THWN	1	\#6 AWG	CU THHN/THWN	200A	200A/3P
12	C	USW1	UX2	1	21/2"	EMT	3	3/0	CU THHN/THWN	1	3/0	CUTHHN/THWN	1	\#6 AWG	CU THHN/THWN	200A	200A/3P
12	D	USW1	UX2	1	$21 / 2^{\prime \prime}$	EMT	3	3/0	CU THHN/THWN	1	3/0	CUTHHN/THWN	1	\#6 AWG	CU THHN/THWN	200A	200A/3P
12	E	HDPPG	HLP8PG	1	21/2"	EMT	3	3/0	CU THHN/THWN	1	3/0	CUTHHN/THWN	1	\#6 AWG	CU THHN/THWN	200A	200A/3P
12	E	TXGP4N	GP4N1	1	21/2"	EMT	3	3/0	CU THHN/THWN	1	3/0	CUTHHN/THWN	1	\#6 AWG	CU THHN/THWN	200A	200A/3P
12	F	MSBBN	HDP1N	1	21/2"	EMT	3	3/0	CU THHN/THWN	1	3/0	CUTHHN/THWN	1	\#6 AWG	CU THHN/THWN	200A	200A/3P
12	G	GDPN1	GPBN1	1	21/2"	EMT	3	3/0	CUTHHN/THWN	1	3/0	CUTHHN/THWN	1	\#6 AWG	CU THHN/THWN	200A	200A/3P
12	H	MSBBS	HDPBN2	1	21/2"	EMT	3	3/0	CU THHN/THWN	1	3/0	CU THHN/THWN	1	\#6 AWG	CU THHN/THWN	200A	200A/3P
13	AO	ESSDP	EATS2	1	$3^{\prime \prime}$	EMT	3	$4 / 0$	CU THHN/THWN	2	$2 / 0$	CU THHN/THWN	1	1/0	CU THHN/THWN	250A	250A/3P
13	B	MSBBS	HDP2S1	1	3"	EMT	3	4/0	CUTHHN/THWN	1	4/0	CU THHN/THWN	1	\#4 AWG	CU THHN/THWN	250A	250A/3P
13	C	MSBBS	HDP3S1	1	3"	EMT	3	4/0	CUTHHN/THWN	1	4/0	CUTHHN/THWN	1	\#4 AWG	CU THHN/THWN	250A	250A/3P
13	D	MSBBS	HDP4S1	1	$3^{\prime \prime}$	EMT	3	4/0	CUTHHN/THWN	1	4/0	CUTHHN/THWN	1	\#4 AWG	CU THHN/THWN	250A	250A/3P
13	E	TXGP4S1	GP4SNL	1	3"	EMT	3	4/0	CU THHN/THWN	1	4/0	CU THHN/THWN	1	\#4 AWG	CU THHN/THWN	250A	250A/3P
13	F	MSBBS	HDP4S2	1	$21 / 2^{\prime \prime}$	EMT	3	3/0	CU THHN/THWN	1	3/0	CU THHN/THWN	1	\#6 AWG	CU THHN/THWN	200A	200A/3P
13	G	MSBBS	HDP3S2	1	$21 / 2^{\prime \prime}$	EMT	3	3/0	CU THHN/THWN	1	3/0	CU THHN/THWN	1	\#6 AWG	CU THHN/THWN	200A	200A/3P
13	H	MSBBS	HDP2S2	1	21/2"	EMT	3	3/0	CU THHN/THWN	1	3/0	CU THHN/THWN	1	\#6 AWG	CU THHN/THWN	200A	200A/3P
14	A	SHDPBN1	SHPP	1	$3{ }^{\prime \prime}$	EMT	3	250 MCM	CU THHN/THWN	1	250 MCM	CU THHN/THWN	1	\#4 AWG	CU THHN/THWN	300A	300A/3P
15	A	TXGP4N	GP4N2	1	4"	EMT	3	350 MCM	CU THHN/THWN	1	350 MCM	CU THHN/THWN	1	\#4 AWG	CU THHN/THWN	300A	300A/3P
17	A	FPATS	UX2	1	4"	EMT	3	500 MCM	CU THHN/THWN	1	500 MCM	CUTHHN/THWN	1	\#3 AWG	CU THHN/THWN	400A	400A/3P
17	B	FP1	FPATS	1	4"	EMT	3	500 MCM	CUTHHN/THWN	1	500 MCM	CUTHHN/THWN	1	\#3 AWG	CU THHN/THWN	400A	400A/3P
17	C	FPATS	FP1	1	4"	EMT	3	500 MCM	CU THHN/THWN	1	500 MCM	CUTHHN/THWN	1	\#3 AWG	CU THHN/THWN	400A	400A/3P
17	DO	GEN	FPATS	1	4"	EMT	3	500 MCM	CU THHN/THWN	2	350 MCM	CUTHHN/THWN	1	3/0	CU THHN/THWN	400A	400A/3P
17	E	SATS1	SHDPBN	1	4"	EMT	3	500 MCM	CUTHHN/THWN	2	500 MCM	CUTHHN/THWN	1	\#3 AWG	CU THHN/THWN	400A	400A/3P
17	FO	GEN	FPATS	1	4"	EMT	3	500 MCM	CUTHHN/THWN	2	350 MCM	CUTHHN/THWN	1	3/0	CU THHN/THWN	400A	400A/3P
17	G	SATS1	SHDPBN	1	4"	EMT	3	500 MCM	CU THHN/THWN	2	500 MCM	CUTHHN/THWN	1	\#3 AWG	CU THHN/THWN	400A	400A/3P
17	H	GEN	FPATS	1	4"	EMT	3	500 MCM	CU THHN/THWN	2	500 MCM	CUTHHN/THWN	1	\#3 AWG	CU THHN/THWN	400A	400A/3P
17	,	SATS1	SHDPBN	1	4"	EMT	3	500 MCM	CU THHN/THWN	2	500 MCM	CUTHHN/THWN	1	\#3 AWG	CU THHN/THWN	400A	400A/3P
17	J	MSBBN	TXGDPBN1	1	4"	EMT	3	500 MCM	CU THHN/THWN	2	500 MCM	CUTHHN/THWN	1	\#3 AWG	CU THHN/THWN	400A	400A/3P
17	K	MSBBS	HDP1S1	1	4"	EMT	3	500 MCM	CU THHN/THWN	2	500 MCM	CUTHHN/THWN	1	\#3 AWG	CU THHN/THWN	400A	400A/3P
17	L	MSBBS	HDP1S2	1	$4 "$	EMT	3	500 MCM	CU THHN/THWN	2	500 MCM	CU THHN/THWN	1	\#3 AWG	CU THHN/THWN	400A	400A/3P
19	A	MSBBN	HDP4N	2	$3^{\prime \prime}$	EMT	3	4/0	CU THHN/THWN	1	4/0	CU THHN/THWN	1	\#2 AWG	CU THHN/THWN	400A	450A/3P
19	B	MSBBN	HDP3N	2	3"	EMT	3	$4 / 0$	CU THHN/THWN	1	4/0	CU THHN/THWN	1	\#2 AWG	CU THHN/THWN	400A	450A/3P
19	C	MSBBN	HDP2N	2	3"	EMT	3	4/0	CUTHHN/THWN	1	4/0	CUTHHN/THWN	1	\#2 AWG	CU THHN/THWN	400A	450A/3P
21	A	SATS2	SHDPBN	2	4"	EMT	3	350 MCM	CU THHN/THWN	1	350 MCM	CU THHN/THWN	1	\#1 AWG	CU THHN/THWN	600A	$600 \mathrm{~A} / 3 \mathrm{P}^{\prime}$
23	A	ESSDP	SATS1	2	4"	EMT	3	500 MCM	CU THHN/THWN	1	500 MCM	CU THHN/THWN	1	1/0	CU THHN/THWN	800A	800A/3P
23	BO	ESSDP	SATS2	2	4"	EMT	3	500 MCM	CU THHN/THWN	1	500 MCM	CU THHN/THWN	1	1/0	CU THHN/THWN	800A	800A/3P
23	C	SATS2	MSBBS	2	4"	EMT	3	500 MCM	CU THHN/THWN	1	500 MCM	CUTHHN/THWN	1	1/0	CU THHN/THWN	800A	800A/3P
23	D	SATS2	MSBBS	2	4"	EMT	3	500 MCM	CUTHHN/THWN	1	500 MCM	CUTHHN/THWN	1	1/0	CU THHN/THWN	800A	800A/3P
23	E	MSBBN	HMPRN	2	4"	EMT	3	500 MCM	CU THHN/THWN	1	500 MCM	CUTHHN/THWN	1	1/0	CU THHN/THWN	800A	800A/3P
23	F	MSBBS	HMPRS	2	$4{ }^{\prime \prime}$	EMT	3	500 MCM	CU THHN/THWN	1	500 MCM	CU THHN/THWN	1	1/0	CU THHN/THWN	800A	800A/3P
25	A	GEN	ESSDP	4	4"	EMT	3	500 MCM	CU THHN/THWN	1	500 MCM	CUTHHN/THWN	1	3/0	CU THHN/THWN	1200A	1200A/3P
25	B	MSBBN	HPPBP	4	4"	EMT	3	500 MCM	CU THHN/THWN	1	500 MCM	CUTHHN/THWN	1	3/0	CU THHN/THWN	1200A	1200A/3P
29	A	UX1	MSBBN	8	4"	EMT	3	500 MCM	CU THHN/THWN	1	500 MCM	CU THHN/THWN	1	500 MCM	CU THHN/THWN	3000A	3000A/3P
29	A	UX2	MSBBS	8	$4{ }^{\prime \prime}$	EMT	3	500 MCM	CU THHN/THWN	1	500 MCM	CU THHN/THWN	1	500 MCM	CU THHN/THWN	3000A	3000A/3P

OTES

1. REFER TO ONE LINE DIAGRAM FOR FEEDER TAGS

Section Two: Distribution System

Summary Description of Distribution System

In Gateway Community College (БСС), the power is distributed through a radial system. The utility service entrance is fed to a I5KV switch and located in the basement of the North Tower. Incoming power is the split to two 2500 KVA step-down transformers which feed two 4000A, 48DY/277V, 3Ф 4W main switchboards which are located in the North tower. Each switchgear serves one tawer, one for the North tawer and one for the South. A 30KVA U.P.S. system pravides power before emergency power is transferred through the generator. The IOIOKW emergency power generator is controlled by four autamatic transfer switches. This system distributes power to distribution panels on each floor (including lighting and receptacle panels), cooling towers on the rouf, AHUs, elevators, and photovaltaic inverter assemblies.

Utility Company Information

The utility that provides power to GCC is named The United Illuminating Company. The United Illuminating Company, headquartered in New Haven, Connecticut is an investor-owned regional electric utility that provides service to more than $320,00 \mathrm{Customers} \mathrm{in} \mathrm{the} \mathrm{greater} \mathrm{New} \mathrm{Haven} \mathrm{and} \mathrm{Bridgeport} \mathrm{area.'}$

	The United Illuminating Company Address: P.D. Bax I564 New Haven, CT प6506-040l
Website:	

Please refer to TABLE 2.1 for mare information (this schedule is provided by BVH Engineering).

Gatway Community College - Electrical Rate				
Based on GST Rate from The United Illuminating Company				
		6pm-10am		
July-December	On Peak	Off peak		
	c/KWhr	c/KWhr	\$	
1. Standard Service Generation	14.2994	12.2994		
2. Delivery Charges				
System benefits	0.1973	0.1973		
Conservation Charge	0.3	0.3		
Renewable Energy Charge	0.1	0.1		
Non Bypassable FMCC	0.4678	0.4678		
3.Competetive Transition Assesment(CTA)				
Demand Rate Charge	1.5222	1.5222		
4. Transmission Charge	2.0474	2.0474		
Sub-total 1-4	18.9341	16.9341		
5. Where Demand Is Billed				
Basic Service Charge			60.42	
Summer:June-September				
Demand Charge				
On Peak Hours			3.35	per KW
Off Peak Hours Of Excess KW			1.67	per KW
Charge per KWhr				
On Peak Hours	4.7437			
Off Peak Hours		0.759		
Winter: October - May				
Demand Charge				
On Peak Hours			1.84	per KW
Off Peak Hours Of Excess KW			1.66	per KW
Charge per KWhr				
On Peak Hours	2.9031			
Off Peak Hours		0.4744		
Summer	23.6778	17.4085		
Winter	21.8372	17.4085		

TABLE 2.1

Service Entrance

(Б) 4 " conduits extend from the curb-line and enter the building in the narth-east basement of the Narth Tower. Power is fed to a I5KV switch then to two 2500 KVA step-down transformers (all supplied by the utility). The utility meters the two service entrances from an exterior meter at the IFKV switch. The owner uses meters located at the main C / Bs that protect the two main switchboards and lighting power monitaring meters (real time totalizing type) at lighting panels to measure the power consumed. Beyond the transformer in the service entrance, the owner provides all equipment.

Voltage Systems

GCC will use 480Y/277V, 3中 4W and 208Y/I20, 3P, 4W voltage systems. The 48DV system will provide power ta large equipment (like AHUs and other mechanical equipment), elevatars, motors and non-incandescent lighting loads. Smaller equipment, receptacles, and incandescent lighting loads are provided power from the 2OBV system.

Emergency Power Systems

 main switchbaards. The generator is fueled by oil and rated at an engine speed of Z2SOfpm. The starting system assaciated is a $24 V$ electric with a negative ground. The ATS's will transfer load (during power failure) from the emergency generator-which will be automatically started-back to switchboards after power is refurbished. These switches will transfer power from the generator to emergency lighting panels which then power exit signs and additional emergency egress lighting, as well as the fire alarm system. Connected to one of the emergency panels is a 3DKVA U.P.S system that will supply power while the generator starts. Two standby ATS's rated at 80IA also connect to the main distribution switchboards and generator. These switches will provide power from the generatar to distribution panels which will power the AHUs. An additional ATS and magnetic only C/B are integrated with the fire pump controller in the Narth tower. This is connected to the secondary side lugs of the transformer in the South tower. A jockey pump with integral disconnecting means is located in the North tower.

Locations of Switchgear

The main gears are located in the basement of the North tower. MSB-BS serves the South tower and is located on the south-mast side of the Narth tower in Substation ECD7, whereas MSB-BN serves the North tower and is located on the west side of the North tower in Substation GOIB. Electrical closest are many and are located throughout the building on every floor in every tower.

Dvercurrent Devices ${ }^{\text {ii }}$

Main Switchbaards:
Main Circuit Breakers are 30 encased-power circuit breaker with interrupting capacity rating to meet available fault current. Branch Circuits are rated smaller than IZOCA, malded-case circuit breaker with electronic trip unit. Types include SWD for switching fluarescent lighting loads and type HACR for heating, air-conditioning, and refrigerating equipment.

Branches 225 A and Larger: Molded-case circuit breaker with electronic trip unit. Branches smaller than 225 A: Moldedcase circuit breaker with thermal magnetic trip.

TABLE 2.2 summarizes the Major Equipment Locatians; provided from the Constructian Dacuments and specifications from Perkins + Will for GCL:

Major Equipment Locations						
Equipment Tag	Type	Floor Level	Room Name	Room Number	1/8th Scale Dwg	Enlarged Plan
SWS	Service Switch	Basement	Xformer/Switchgear Room	E008	EP-100B	E-206
TXS1	Service Transformer	Basement	Xformer/Switchgear Room	E008	EP-100B	E-206
TXS2	Service Transformer	Basement	Xformer/Switchgear Room	E008	EP-100B	E-206
TX GPBN1	Stepdown Xfmr	Basement	Substation	G018	EP-100C	E-206
TX GPBN2	Stepdown Xfmr	Basement	Substation	E007	EP-100B	N/A
TX GPPG	Stepdown Xfmr	Basement	Substation	G018	EP-100C	E-206
TX GP1N	Stepdown Xfmr	First	Elec Clo	G106	EP-101C	N/A
TX KPN1	Stepdown Xfmr	First	Elec Clo	G106	EP-101C	N/A
TX MKP2	Stepdown Xfmr	--	--	--	--	--
TX GP1S1	Stepdown Xfmr	First	Elec Clo	D1045	EP-101B	N/A
TX GP1S2	Stepdown Xfmr	First	Elec Clo	A110	EP-101A	N/A
TX DKP1	Stepdown Xfmr	First	Elec Clo	A110	EP-101A	N/A
TX KP1S	Stepdown Xfmr	First	Elec Clo	D1045	EP-101B	N/A
TX GP2N	Stepdown Xfmr	Second	Elec Clo	G206	EP-102C	N/A
TX GP2S1	Stepdown Xfmr	Second	Elec Clo	K206	EP-102A	N/A
TX GP2S2	Stepdown Xfmr	Second	Elec Clo	A210	EP-102A	N/A
TX GP3N	Stepdown Xfmr	Third	Elec Clo	G308	EP-103C	N/A
TX GP3S1	Stepdown Xfmr	Third	Elec Clo	K306	EP-103A	N/A
TX GP3S2	Stepdown Xfmr	Third	Elec Clo	A310	EP-103A	N/A
TX GP4N	Stepdown Xfmr	Fourth	Elec Clo	K406	EP-104C	N/A
TX GP4S1	Stepdown Xfmr	Fourth	Elec Clo	K406	EP-104C	N/A
TX GP4S2	Stepdown Xfmr	Fourth	Elec Clo	A410	EP-104A	N/A
MSB BN	Main Switchboard	Basement	Substation	G018	EP-100C	E-206
MSB BS	Main Switchboard	Basement	Substation	E007	EP-100B	N/A
HDP PG	Distribution Panel	--	--	--	--	--
HDP BN2	Distribution Panel	Basement	Substation	E007	EP-100B	N/A
HDP 1N	Distribution Panel	First	Elec Clo	G106	EP-101C	N/A
HDP 1S1	Distribution Panel	First	Elec Clo	D1045	EP-101B	N/A
HDP 1S2	Distribution Panel	First	Elec Clo	A110	EP-101A	N/A
HDP 2N	Distribution Panel	Second	Elec Clo	G206	EP-102C	N/A
HDP 2S1	Distribution Panel	Second	Elec Clo	K206	EP-102B	N/A
HDP 2S2	Distribution Panel	Second	Elec Clo	A210	EP-102A	N/A
HDP 3N	Distribution Panel	Third	Elec Clo	G308	EP-103C	N/A
HDP 3S1	Distribution Panel	Third	Elec Clo	K306	EP-103B	N/A
HDP 3S2	Distribution Panel	Third	Elec Clo	A310	EP-103A	N/A
HDP 4N	Distribution Panel	Fourth	Elec Clo	K406	EP-104C	N/A
HDP 4S1	Distribution Panel	Fourth	Elec Clo	K406	EP-104B	N/A
HDP 4S2	Distribution Panel	Fourth	Elec Clo	A410	EP-104A	N/A

TABLE 2.2

Major Equipment Locations						
Equipment Tag	Type	Floor Level	Room Name	Room Number	1/8th Scale Dwg	Enlarged Plan
GDP BN1	Distribution Panel	Basement	Substation	G018	EP-100C	E-206
ATS1	Automatic Transfer Switch	Basement	Substation	E007	EP-100B	E-206
ATS2	Automatic Transfer Switch	Basement	Substation	G018	EP-100C	E-206
S ATS1	Stand by Auto. Trans. Switch	Basement	Substation	G018	EP-100C	E-206
S ATS2	Standby Auto. Trans. Switch	Basement	Substation	E007	EP-100B	E-206
ATS FP	Integral ATS to Fire Pump	--	--	--	--	--
TX ELP-BN1	Transformer	Basement	Substation	G018	EP-100C	E-206
TX SLP-BN1	Transformer	Basement	Substation	G018	EP-100C	E-206
TX SLP-BN2	Transformer	Basement	Substation	E007	EP-100B	E-206
TX ELP-BS	Transformer	Basement	--	--	--	--
TX SLP-BN	Transformer	Basement	--	--	--	--
EMHDPBN	Emergency Dist. Panel	Basement	Substation	G018	EP-100C	E-206
EMHDPBN2	Emergency Dist. Panel	Basement	Substation	E007	EP-100B	E-206
ESS DP	Emergency Dist. Panel	Basement	Substation	G018	EP-100C	E-206
SHDP BN1	Standby Dist. Panel	Basement	Substation	E007	EP-100B	E-206
SHDP BN	Standby Dist. Panel	Basement	Substation	G018	EP-100C	E-206
SLP BN1	Standby Ltg. Panel	Basement	Substation	G018	EP-100C	E-206
SLP BN	Standby Ltg. Panel	Basement	--	--	--	--
SHPP BP	Standby Ltg. Panel	Basement	Chiller Room	G025.2	EP-100C	N/A
30 KVA UPS	Uninterrupted Power Supply	Basement	MCER Room	G001	EP-100B	N/A
PP UPS	Uninterrupted Power Supply	Basement	MCER Room	G001	EP-100B	N/A
GEN	Generator	Roof	Roof	--	ES-105B	N/A

TABLE 2.2 (CDNT.)

Distribution Panelboards:
The Main Dvercurrent Protective Devices are circuit breakers. Branch Dvercurrent Protective Devices are bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.

Lighting and Appliance Panelboards:
Main Dvercurrent Protective Devices are circuit breakers and Branch Dvercurrent Protective Devices bolt-on circuit breakers, replaceable without disturbing adjacent units.

TABLE 2.3 summarizes the Panelbard Locations; provided from the Construction Dacuments and specifications from Perkins + Will for GCL:

Panelboard Table								
Equipment Tag	Type	Main Size	Voltage System	Floor Level	Room Name	Room Number	1/8th Scale Dwg	Enlarged Plan
HLP BN1	Lighting Panel	100A-3P	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	Basement	Substation	G018	EP-100C	E-206
HLP PG	Lighting Panel	200A-3P	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	--	--	--	--	--
HLP BN2	Lighting Panel	50A-3P	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	Basement	Substation	E007	EP-100B	N/A
HLP 1N	Lighting Panel	125A-3P	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	First	Elec Clo	G106	EP-101C	N/A
HLP 1S1	Lighting Panel	100A-3P	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	First	Elec Clo	D1045	EP-101B	N/A
HLP 1S2	Lighting Panel	100A-3P	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	First	Elec Clo	A110	EP-101A	N/A
HLP 2N	Lighting Panel	150A-3P	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	Second	Elec Clo	G206	EP-102C	N/A
HLP 2S1	Lighting Panel	100A-3P	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	Second	Elec Clo	K206	EP-102B	N/A
HLP 2S2	Lighting Panel	100A-3P	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	Second	Elec Clo	A210	EP-102A	N/A
HLP 3N	Lighting Panel	150A-3P	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	Third	Elec Clo	G308	EP-103C	N/A
HLP 3S1	Lighting Panel	100A-3P	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	Third	Elec Clo	K306	EP-103B	N/A
HLP 3S2	Lighting Panel	100A-3P	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	Third	Elec Clo	A310	EP-103A	N/A
HLP 4N	Lighting Panel	150A-3P	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Fourth	Elec Clo	K406	EP-104C	N/A
HLP 4S1	Lighting Panel	100-3P	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	Fourth	Elec Clo	K406	EP-104B	N/A
HLP 4S2	Lighting Panel	200A-3P	$480 \mathrm{Y} / 277 \mathrm{~V}, 3 \oplus, 4 \mathrm{~W}$	Fourth	Elec Clo	A410	EP-104A	N/A
HPPBP	Lighting Panel	1200A-3P	N/A	Basement	Chiller Room	G025.2	EP-100C	N/A
HMPRN	Lighting Panel	800A-3P	480Y/277V, 3Ф, 4W	--	--	--	--	--
HMPRS	Lighting Panel	800A-3P	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	Fourth	Elec Clo	A410	EP-104A	N/A
GP BN1	Receptacle Panel	200A-3P	208Y/120V, 3Ф, 4W	Basement	Substation	G018	EP-100C	E-206
GP MWS	Receptacle Panel	100A-3P	208Y/120V, 3Ф, 4W	Basement	Maintenance Workshop	G031	EP-100C	E-206
GPBP	Receptacle Panel	100A-3P	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Basement	HVAC Maint. Gen. Storage	G025.1	EP-100C	N/A
GP BN2	Receptacle Panel	100A-3P	208Y/120V, 3Ф, 4W	Basement	Substation	E007	EP-100B	E-206
GP PG	Receptacle Panel	250A-3P	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Basement	Substation	G018	EP-100C	E-206
GP BN2	Receptacle Panel	--	--	Basement	Substation	E007	EP-100B	N/A
GP 1N	Receptacle Panel	350A-3P	208Y/120V, 3Ф, 4W	First	Elec Clo	G106	EP-101C	N/A
GP 1S1	Receptacle Panel	250A-3P	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	First	Elec Clo	D1045	EP-101B	N/A
GP 1S2	Receptacle Panel	250A-3P	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	First	Elec Clo	A110	EP-101A	N/A
GP 2N	Receptacle Panel	350A-3P	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Second	Elec Clo	G206	EP-102C	N/A
GPGCL 2N	Receptacle Panel	100A-3P	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Second	Computer Lab	G201	EP-102B	N/A
GP 2S1	Receptacle Panel	250A-3P	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Second	Elec Clo	K206	EP-102A	N/A
GP 2S2	Receptacle Panel	250A-3P	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Second	Elec Clo	A210	EP-102A	N/A
GPGCL 2 S	Receptacle Panel	100A-3P	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Second	EE	B205	EP-102A	N/A
GP 3N	Receptacle Panel	350A-3P	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Third	Elec Clo	G308	EP-103C	N/A
GP 351	Receptacle Panel	250A-3P	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Third	Elec Clo	K306	EP-103A	N/A
GP 3S2	Receptacle Panel	250A-3P	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Third	Elec Clo	A310	EP-103A	N/A
GP 4N1	Receptacle Panel	350A-3P	208Y/120V, 3Ф, 4W	Fourth	Elec Clo	K406	EP-104C	N/A

Panelboard Table								
Equipment Tag	Type	Main Size	Voltage System	Floor Level	Room Name	Room Number	1/8th Scale Dwg	Enlarged Plan
GP 4N2	Receptacle Panel	N/A	208Y/120V, 3Ф, 4W	Fourth				
GP 4S1	Receptacle Panel	175A-3P	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Fourth	Elec Clo	K406	EP-104C	N/A
GP 4S2	Receptacle Panel	250A-3P	208Y/120V, 3Φ, 4W	Fourth	Elec Clo	A410	EP-104A	N/A
GP 4SNL	Receptacle Panel	--	--	Fourth	--	--	--	--
GP 4SSL	Receptacle Panel	N/A	208Y/120V, 3Φ, 4W	Fourth	--	--	--	--
LP CNC	Lighting Panel	150A-3P Shunt Trip	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Basement	Manufacturing Engineering	G040	EP-100C	N/A
LP ME	Lighting Panel	100A-3P Shunt Trip	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Basement	Mechanical Engineering	G018	EP-100C	E-206
KP1N	Lighting Panel	N/A	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	First	Food Stoage	G101.8	EP-101C	N/A
KP1S	Lighting Panel	--	--	First	Corridor	K104	EP-101A	N/A
DKP1	Lighting Panel	250A-3P	208Y/120V, 3Ф, 4W	First	Corridor	K104	EP-101A	N/A
EHLP BN1	Emergency Ltg. Panel	Lugs Only	480Y/277V, 3Ф, 4W	Basement	Substation	G018	EP-100C	E-206
EHLP BPG	Emergency Ltg. Panel	100A-3P	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	Basement	--	--	--	--
EHLP BN2	Emergency Ltg. Panel	--	--	Basement	Substation	E007	EP-100B	E-206
EHLP 1N1	Emergency Ltg. Panel	Main Lugs Only	480Y/277V, 3Ф, 4W	First	Freight Lobby	G108	EP-101C	N/A
EHLP 1S1	Emergency Ltg. Panel	Main Lugs Only	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	First	--	--	--	--
EHLP 2N	Emergency Ltg. Panel	Main Lugs Only	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	Second	Freight Lobby	G208	EP-102C	N/A
EHLP 2 S	Emergency Ltg. Panel	Main Lugs Only	480Y/277V, 3Ф, 4W	Second	EE	B205	EP-102A	N/A
EHLP 3N	Emergency Ltt. Panel	Main Lugs Only	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	Third	Freight Lobby	G308	EP-103C	N/A
EHLP 35	Emergency Ltg. Panel	Main Lugs Only	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	Third	EEC	B305	EP-103A	N/A
EHLP 4N	Emergency Ltg. Panel	Main Lugs Only	480Y/277V, $3 \Phi, 4 \mathrm{~W}$	Fourth	Freight Lobby	G408	EP-104C	N/A
EHLP 4PG	Emergency Ltg. Panel	--	--	Fourth	Freight Lobby	G408	EP-104C	N/A
EHLP 4S	Emergency Ltg. Panel	50A-3P	480Y/277V, 3Ф, 4W	Fourth	EEC	B405	EP-104A	N/A
ELP BN	Emergency Ltg. Panel	Main Lugs Only	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Basement	Substation	G018	EP-100C	E-206
ELP BN2	Emergency Ltg. Panel	Main Lugs Only	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Basement	Substation	E007	EP-100B	E-206
ELP 2N	Emergency Ltg. Panel	Main Lugs Only	208Y/120V, 3Ф, 4W	Second	Freight Lobby	G208	EP-102C	N/A
ELP 2S	Emergency Ltg. Panel	Main Lugs Only	208Y/120V, 3Φ, 4W	Second	EE	B205	EP-102A	N/A
ELP 4N	Emergency Ltg. Panel	Main Lugs Only	208Y/120V, 3Ф, 4W	Fourth				
ELP 4S	Emergency Ltt. Panel	Main Lugs Only	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Fourth	EEC	B405	EP-104A	N/A
SHDP BN1	Standby Dist. Panel	400A-3P	480Y/277V, 3Ф, 4W	Basement	Substation	E007	EP-100B	E-206
SHDP BN	Standby Dist. Panel	400A-3P	$480 \mathrm{Y} / 277 \mathrm{~V}, 3 \Phi, 4 \mathrm{~W}$	Basement	Substation	G018	EP-100C	E-206
SLP BN1	Standby Ltt. Panel	50A-3P	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Basement	Substation	G018	EP-100C	E-206
SLP BN	Standby Ltt. Panel	50A-3P	208Y/120V, 3Φ, 4W	Basement	--	--	--	--
SHPP BP	Standby Ltg. Panel	--	--	Basement	Chiller Room	G025.2	EP-100C	N/A
30 KVA UPS	Uninterrupted Power Supply	--	--	Basement	MCER Room	G001	EP-100B	N/A
PP UPS	Uninterrupted Power Supply	Main Lugs Only	208Y/120V, $3 \Phi, 4 \mathrm{~W}$	Basement	MCER Room	G001	EP-100B	N/A

Transformers:

In the following table, transformers are separated by their lacation within GC[; either in the parking garage, North Tower, ar South Tower. Primary and secondary voltage, size, type, and additional praperties are listed.

TABLE 2.4 contains information on the transfarmers provided by the Construction Documents and specifications from Perkins + Will for GCL:

Individual Transformer Schedule								
Tag	Primary Voltage	Secondary Voltage	Size (KVA)	Type	Temp. Rise	Taps	Mounting	Remarks
Parking Garage								
TX GPPG	480V-3Ф Delta	208/120V 3D, 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5\% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
North Tower								
TX GPBN1	480V-3Ф Delta	208/120V 3D, 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX GPBN2	480V-3Ф Delta	208/120V 3D, 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX GP1N	480V-3Ф Delta	208/120V3@, 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX CKPN1	480V-3Ф Delta	208/120V 3®, 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX GP2N	480V-3Ф Delta	208/120V 3Ф, 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX GP3N	480V-3Ф Delta	208/120V 3Ф, 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX GP4N	480V-3Ф Delta	208/120V 3®, 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
South Tower								
TXSS	480V-3Ф Delta	208/120V3Ф, 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TXSN	480V-3Ф Delta	208/120V 3®, 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX GP1S1	480V-3Ф Delta	208/120V 3D, 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX GP1S2	480V-3Ф Delta	208/120V 3Ф, 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX GP2S1	480V-3Ф Delta	208/120V 3Ф, 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	

TABLE 2.4

Individual Transformer Schedule								
Tag	Primary Voltage	Secondary Voltage	Size (KVA)	Type	Temp. Rise	Taps	Mounting	Remarks
TX GP2S2	480V-3Ф Delta	208/120V3Ф, 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX GP3S1	480V-3@ Delta	208/120V 3 , 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX GP3S2	480V-3Ф Delta	208/120V3D, 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5\% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX GP4S1	480V-3Ф Delta	208/120V 3 , 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5\% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX GP4S2	480V-3@ Delta	208/120V 3@, 4W	112.5	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5\% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX MKP2	480V-3@ Delta	208/120V 3 , 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX DKP1	480V-3Ф Delta	208/120V 3 , 4W	75	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
Standby Power								
TX SLP-BN1	480V-3@ Delta	208/120V3D, 4W	30	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5\% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX SLP-BN	480V-3@ Delta	208/120V3D, 4W	30	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
Emergency Power								
TX ELP1N	480V-3@ Delta	208/120V 3 , 4W	15	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX ELP1S1	480V-3@ Delta	208/120V 3 , 4W	15	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5\% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX ELP-BN1	480V-3Ф Delta	208/120V 3D, 4W	15	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	
TX ELP-BS	480V-3@ Delta	208/120V 3 , 4W	15	Dry Type	$115^{\circ} \mathrm{C}$	(6) 2.5% Taps 2 Up 4 Below	Pad Mounted Vibration Isolated	

TABLE 2.4 (CDNT.)

Special Equipment:

Power generation:

Solar Panelsiii
The SPS are sized for 5.1 kVA and a minimum 5.1 kW output and load voltage will be 277 VAC, single-phase, 3 -wire. Input voltage will be GOI VDC max, 3 -wire. The PV madules shall support the SPS at IIC percent rated kW load for continuous operation during day time. Under normal conditions, the load is provided with ac power flowing from the inverter output
terminals, through the Photovaltaic madules and inverter, with the utility grid power connected in parallel with the inverter output. Normal conditions for automatic operation include: supplying load during the day, supplying load at night from the utility grid power connected in parallel. It the times where power is in excess in the system, excess power produced from solar panels is fed back inta the utility grid. Under Standard Test Conditions

Power Quality Equipment:

UPS System ${ }^{\text {iv }}$
The UPS is sized for 30 kVA and a minimum 24 kW output, load valtage and bypass line voltage will be 208/I2C VAC, threephase, 4 -wire. Input voltage will be 48 V VAL, three-phase, 3 -wire. The battery shall support the UPS at ICO percent rated kW load for at least 2 C minutes at 25 deg C . If normal ac power supply fluctuates, the UPS battery maintains constant ac load without breaking any connections.

Lighting Laads

Electric lighting is a balance between function, performance, and appearance. The majorities of lamp types are linear/compact fluorescent and metal halide, and are designed to the lowest wattage consumption to meet LEED ${ }^{⿴ 囗}$ criteria. Time clack control as well as daylight and accupancy sensars are used to limit the operation time and electric load consumed by different fixtures.

TABLE 2.5 summarizes the luminaires specified for GCL. Alsa included are lamp type and number, ballast type, input wattage, and operating and starting current and power factor. Please see Appendix A for HID ballast cut sheets.

LIGHTING LOAD SCHEDULE											
FIXTURE TYPE	LAMP TYPE	LAMP WATTAGE	\# LAMPS	BALLAST TYPE	OPERATING VOLTAGE	INPUT WATTS	BALLAST FACTOR	CURRENT @ START/OPERATING		PF@ START/OPERATING	
F1	F28T5	28	2	DALI/DIMMING	277	63	1	-	0.23	-	0.99
F1A	F28T5	28	1	DALI/DIMMING	277	32	1	-	0.12	-	0.96
F2	F28T5	28	2	DALI/DIMMING	277	63	1	-	0.23	-	0.99
F2A	F28T5	28	1	DALI/DIMMING	277	32	1	$-$	0.12	-	0.96
F3	CFTR26	26	1	DALI/DIMMING	277	28	1	-	0.11	-	0.92
F3A	CF26DT	26	1	DALI/DIMMING	277	28	1	-	0.24	-	0.42
F4	F28T5	28	2	DALI/DIMMING	277	63	1	-	0.23	-	0.99
F5	F28T5	28	2	DALI/DIMMING	277	63	1	$-$	0.23	-	0.99
F6	F28T5	28	1	DALI/DIMMING	277	32	1	-	0.12	-	0.96
F7	F28T5	28	2	DALI/DIMMING	277	63	1	-	0.23	-	0.99
F8	CF26DT	26	1	DALI/DIMMING	277	28	1	-	0.11	-	0.92
F9	T5 CIRCLINE	26	1	DALI/DIMMING	277	26	1	-	-	-	-
F10	F14T5	14	1	DALI/DIMMING	277	18	1	-	0.07	-	0.93
F11	F28T5	28	1	DALI/DIMMING	277	32	1	$-$	0.12	-	0.96
F12	LED	0.5	1	LED DRIVER	277	0.5	-	-	-	-	-
F13	F28T5	28	2	DALI/DIMMING	277	63	1	-	0.23	-	0.99
F14	MP250	250	1	ELEC	277	272	1	1.3	1.08	0.76	0.91
F14A	MP400	400	1	ELEC	277	425	1	2.1	1.7	0.73	0.90
F15	MC150T 7	150	1	ELEC	277	167	1	0.7	0.63	0.86	0.96
F16	LED	3W/FT MAX	-	LED DRIVER	277	3W/FT	-	-	-	-	-
F17	CF26DT	26	1	DALI/DIMMING	277	28	1	-	0.11	-	0.92
F18	F28T5	28	2	DALI/DIMMING	277	63	1	-	0.23	$-$	0.99
F19	CF26DT	26	1	DALI/DIMMING	277	28	1	-	0.11	-	0.92
F20	F28T5	28	4	DALI/DIMMING	277	63	1	-	0.23	,	0.99
F20	MCP39PAR20	39	1	ELEC	277	44	1	0.5	0.56	0.32	0.28
F21	NOT USED	-	-	\checkmark	-	-	-	-	-	-	-
F22	CF26DT	26	1	DALI/DIMMING	277	28	1	-	0.11	-	0.92
F23	F28T5	28	2	DALI/DIMMING	277	63	1	-	0.23	\checkmark	0.99
F24	F28T5	28	1	DALI/DIMMING	277	32	1	-	0.12	-	0.96

TABLE 2.5

LIGHTING LOAD SCHEDULE											
FIXTURE TYPE	LAMP TYPE	LAMP WATTAGE	\# LAMPS	BALLAST TYPE	OPERATING VOLTAGE	INPUT WATTS	BALLAST FACTOR	CURRENT @ START/OPERATING		PF @ START/OPERATING	
F25	F28T5	28	2	DALI/DIMMING	277	63	1	-	0.23	-	0.99
F26	F14T5	14	2	DAL/DIMMING	277	32	1	-	0.13	-	0.89
F27	MH39T6	39	1	ELEC	277	44	1	0.3	0.19	0.53	0.84
F28	F14T5	14	2	DALI/DIMMING	277	34	1	-	0.13	-	0.94
F28	F14T5	14	1	DALI/DIMMING	277	19	1	-	0.07	-	0.98
F29	LED	5	1	LED DRIVER	277	6	-	-	-	-	-
F30	F28T5	28	1	DALI/DIMMING	277	32	1	-	0.12	-	0.96
F31	CF26DT	26	1	DAL/DIMMING	277	28	1	-	0.11	-	0.92
F32	F14T5	14	2	DALI/DIMMING	277		1	-	0.13	-	0.00
F32	F14T5	14	1	DALI/DIMMING	277		1	-	0.07	-	0.00
F32	T5 CIRCLINE	22	1	DAL/DIMMING	277		1	-	-	-	-
F33	F28T5	28	4	DAL/DIMMING	277	63	1	-	0.23	-	0.99
F34	F28T5	28	1	DALI/DIMMING	277	32	1	-	0.12	-	0.96
F34A	F28T5	28	2	DAL/DIMMING	277	63	1	-	0.23	-	0.99
F35	TRACK	-	-	-	-	-	-	-	-	-	-
F35A	PAR38	100	1	-	120	100	-	-	-	-	1.00
F50B	CMH39PAR30	39	1	ELEC	277	48	1	0.3	0.19	0.58	0.91
F36	CF26DT	26	1	DAL/DIMMING	277	28	1	-	0.11	-	0.92
F37	CF26DT	26	1	DALI/DIMMING	277	28	1	-	0.11	-	0.92
F38	NOT USED	-	-	-	-	-	-	-	-	-	-
F39	CF26DT	26	1	DALI/DIMMING	277	28	1	-	0.11	-	0.92
F40	CFTR26	26	1	DALI/DIMMING	277	28	1	-	0.11	-	0.92
F41	F28T5	28	1	DALI/DIMMING	277	32	1	-	0.12	-	0.96
F41A	F28T5	28	1	DAL/DIMMING	277	32	1	-	0.12	-	0.96
F41B	F28T5	28	2	DALI/DIMMING	277	63	1	-	0.23	-	0.99
F41B	CMH MR16	20	1	ELEC	277	22.5	1	-	0.36	-	0.23
F41C	F28T5	28	1	DAL/DIMMING	277	32	1	-	0.12	-	0.96
F42	LED	-	-	-	277	4	-	-	-	-	-
F43	F28T5	28	1	DALI/DIMMING	277	32	1	-	0.12	$-$	0.96
F44	CF26DT	26	1	DAL//DIMMING	277	28	1	$-$	0.11	-	0.92
F45	CMH MR16	20	2	ELEC	277	22.5	1	-	0.36	-	0.23
F46	CMH MR16	20	1	ELEC	277	22.5	1	-	0.36	-	0.23
F47	CF26DT	26	2	DAL/DIMMING	277	55	1	-	0.11	-	1.81
F48	CFTR26	26	1	DALI/DIMMING	277	28	1	-	0.11	-	0.92
F49	F28T5	28	2	DALI/DIMMING	277	63	1	-	0.23	-	0.99
F50	F28T5	28	1	DALI/DIMMING	277	32	1	-	0.12	-	0.96
F50A	PAR 38 HAL	100	1	$-$	120	100	-	-	-	-	1.00
F50B	CMH39PAR30	39	1	ELEC	277	48	1	0.3	0.19	0.58	0.91
F51	LED			LED DRIVER	277	9	-	-	-	-	
F52	F28T5	28	1	DALI/DIMMING	277	32	1	-	0.12	-	0.96
F53	F28T5	28	1	DALI/DIMMING	277	32	1	$-$	0.12	-	0.96
F53A	F28T5	28	2	DALI/DIMMING	277	63	1	-	0.23	-	0.99
F54	F14T5	14	2	DALI/DIMMING	277	32	1	-	0.13	-	0.89
F54A	F28T5	28	2	DALI/DIMMING	277	64	1	-	0.23	-	1.00
F55	F28T5	28	1	DALI/DIMMING	277	32	1	-	0.12	-	0.96
F56	F28T5	28	1	DALI/DIMMING	277	32	1	-	0.12	-	0.96
F57	CFTR26	26	1	DALI/DIMMING	277	28	1	-	0.11	-	0.92
F58	LED		1	LED DRIVER	277	20W/FT	-	-	-	-	-
F59	CF26DT	26	1	DALI/DIMMING	277	28	1	-	0.24	-	0.42
F60	F28T5	28	2	DALI/DIMMING	277	63	1	$-$	0.12	$-$	1.90
F61	CF26DT	26	1	DALI/DIMMING	277	28	1	-	0.11	-	0.92
F62	CF26DT	26	1	DALI/DIMMING	277	28	1	-	0.11	-	0.92
F63	CF26DT	26	1	DALI/DIMMING	277	28	1	-	0.11	-	0.92
F64	F14T5	14	1	DALI/DIMMING	277	16	1	-	0.07	-	0.83
F65	TBD	-	-	-	-	-	-	-	-	-	-
F66	F28T5	28	2	DAL/DIMMING	277	63	1	-	0.23	-	0.99
F67	F28T5	28	2	DAL/DIMMING	277	63	1	-	0.23	-	0.99
F68	COLD CATHOD	-	-	-	-	\checkmark	-	-	-	-	-
F69	CFTR26	26	1	DALI/DIMMING	277	28	1	-	0.11	-	0.92
F70	F28T5	28	1	DALI/DIMMING	277	32	1	-	0.12	-	0.96
F71	F28T5	28	1	DALI/DIMMING	277	32	1	-	0.12	-	0.96
F72	NOT USED	-	-	-	-	-	-	-	-	-	-
F73	F14T5	14	1	DALI/DIMMING	277	16	1	-	0.15	-	0.39
F74	F28T5	28	2	DALI/DIMMING	277	63	1	-	0.23	-	0.99
F75	F28T5	28	2	DAL/DIMMING	277	63	1	$-$	0.23	-	0.99
F76	NOT USED	-	\checkmark		-	-	-	-	-	-	-
NOTES: For Met	Halide ballast	formation, please	efer to $A p$	pendix A							

TABLE 2.5 (CRNT.)

TABLE 2.6 summarizes automatic shutoff requirements set by ASHRAE g0.I:

Space Type	LPD (W./ft^2)	$\begin{gathered} \text { Area } \\ \left(\mathrm{ft}^{\wedge} 2\right) \end{gathered}$	Exceptions	Allowance	Abide by Compliance Path	Total Allowable
Library Stacks	1.7	7456	Decorative (Chandeliers)	$+1.0\left(\mathrm{~W} . / 7 \mathrm{tt}^{\wedge} \mathrm{L}\right)$	a., b.,	20131.2W
Exterior Garden (Exterior Walkway $>10 \mathrm{ft}$.	1.0	4319	Advertisement Signage (b.)	Exempt with individual control device	a., c. e., f.	4319W+
Atrium (1-3)	. 6	12684			a., b., d.	7615W
Atrium (4)	. 2	3173			a., b.,	635W
Classroam	1.4	2304			a.,	3226W
Compliance Path	Name	Conditions				
a. 9.4.1.1	Autamatic LTK Shutaff	>500 ft^{\wedge} 2, int Itg controlled with automatic control device				
b. 9.4.1. 2	Space Control	Space enclose with ceiling height partitions will have auto shut-aff within 30 min of leaving				
c. 9.4.1. 3	Exteriar Ltg Contral	All exteriar will be shut off when sufficient daylight is present, photasensar or astronomical time switch				
d. \quad 9.4.1. 4	Additional Control	Display/accent will have separate control device				
e. $\quad 9.4 .4$	Ext. Building Grounds Ltg	All exterior > ITCW shall have efficacy of BOlm/W				
f. 9.4.5	Ext. Building Ltg Pwr	Total exterior power allowance is sum of everything in table 9.4 .5 "tradable surfaces" $+5 \%$ unrestricted of sum.				

TABLE 2.6

Mechanical (and ather) Loads

TABLE 2.7 summarizes the load in KVA and KW created by different types of equipment in FCC. A total for each section load can be seen at the end of the section and a total of the systems at the end of the schedule itself.

MECHANICAL AND OTHER LOADS									
LOAD TAG	LOAD DESCRIPTION	LOAD MAGNITUDE	LOAD UNITS	MOTOR AMPS	VOLTAGE	PHASES	POWER FACTOR	kVA	kW
LABORATORY									
LEF-1	LAB EXHAUST FAN	50	HP	65.0	460.0	3.0	0.93	51.8	48.2
LEF-2	LAB EXHAUST FAN	50	HP	65.0	460.0	3.0	0.93	51.8	48.2
LEF-3	LAB EXHAUST FAN	50	HP	65.0	460.0	3.0	0.93	51.8	48.2
PLUMBING							SUM:	155.4	144.5
LVP	LAB VACUUM PUMP	(2) 5	HP	15.2	460.0	3.0	0.94	12.1	11.4
LCA	LAB COMPRESSED AIR PACKAGED SYSTEM	(2) 10	HP	28.0	460.0	3.0	0.94	22.3	21.0
HWRP	SOLAR WATER RETURN PUMP	1/2	HP	9.8	115.0	1.0	0.80	1.1	0.9
EP1	EJECTOR PUMP	3/4	HP	1.6	460.0	3.0	0.82	1.3	1.0
SP1	SUMP PUMP	3/4	HP	1.6	460.0	3.0	0.85	1.3	1.1
DWBP	-	15	HP	21.0	460.0	3.0	0.93	16.7	15.6
PUMPS								54.8	50.9
SCHWP-1	CHILLED WATER PUMP	75	HP	96.0	460.0	3.0	0.95	76.5	72.7
SCHWP-2	CHILLED WATER PUMP	75	HP	96.0	460.0	3.0	0.95	76.5	72.7
CHWP-1	ICE STORAGE WATER PUMP	25	HP	34.0	460.0	3.0	0.93	27.1	25.2
CHWP-2	ICE STORAGE WATER PUMP	25	HP	34.0	460.0	3.0	0.93	27.1	25.2
CWP-1	CONDENSOR WATER PUMP	30	HP	40.0	460.0	3.0	0.93	31.9	29.6
CWP-2	CONDENSOR WATER PUMP	30	HP	40.0	460.0	3.0	0.93	31.9	29.6
SHWP-1	HOT WATER PUMP	25	HP	34.0	460.0	3.0	0.93	27.1	25.2
SHWP-2	HOT WATER PUMP	25	HP	34.0	460.0	3.0	0.93	27.1	25.2
HWP-1	HOT WATER PUMP	-	HP	-			0.93	25	23.3
HWP-2	HOT WATER PUMP	-	HP	-			0.93	25	23.3
HWP-3	HOT WATER PUMP	3/4	HP	1.6	460.0	3.0	0.85	1.3	1.1
FANS								376.3	353.0
EF-1	FAN	1/2	HP	1.1	460.0	3.0	0.80	0.9	0.7
EF-2	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
EF-3	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
EF-4	FAN	1/4	HP	5.8	115.0	1.0	0.75	0.7	0.5
EF-5	FAN	1/6	HP	4.4	115.0	1.0	0.73	0.5	0.4
EF-6	FAN	1/6	HP	4.4	115.0	1.0	0.73	0.5	0.4
EF-7	FAN	1/6	HP	4.4	115.0	1.0	0.73	0.5	0.4
EF-8	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
EF-9	FAN	3/4	HP	1.6	460.0	3.0	0.82	1.3	1.0
EF-10	FAN	1/4	HP	5.8	115.0	3.0	0.75	1.2	0.9
EF-11	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
EF-12	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
EF-13	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
EF-14	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
EF-15	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
EF-16	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
EF-17	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
EF-18	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
EF-19	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
EF-20	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4

TABLE 2.7

MECHANICAL AND OTHER LOADS									
LOAD TAG	LOAD DESCRIPTION	LOAD MAGNITUDE	LOAD UNITS	MOTOR AMPS	VOLTAGE	PHASES	POWER FACTOR	kVA	kW
EF-21	FAN	1/4	HP	5.8	115.0	1.0	0.75	0.7	0.5
EF-22	FAN	1/4	HP	5.8	115.0	1.0	0.75	0.7	0.5
EF-23	FAN	1/4	HP	5.8	115.0	1.0	0.75	0.7	0.5
EF-24	FAN	1/4	HP	5.8	115.0	1.0	0.75	0.7	0.5
EF-25	FAN	1/4	HP	5.8	115.0	1.0	0.75	0.7	0.5
GEF-1	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
GEF-2	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
GEF-3	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
GEF-4	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
GEF-5	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
GEF-6	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
GEF-7	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
GEF-8	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
GEF-9	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
GEF-10	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
GEF-11	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
GEF-12	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
GEF-13	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
KEF-1	FAN	2	HP	3.4	460.0	3.0	0.86	2.7	2.3
KEF-2	FAN	2	HP	3.4	460.0	3.0	0.86	2.7	2.3
KEF-3	FAN	2	HP	3.4	460.0	3.0	0.86	2.7	2.3
KEF-4	FAN	2	HP	3.4	460.0	3.0	0.86	2.7	2.3
KEF-5	FAN	2	HP	3.4	460.0	3.0	0.86	2.7	2.3
KEF-6	FAN	2	HP	3.4	460.0	3.0	0.86	2.7	2.3
KEF-7	FAN	2	HP	3.4	460.0	3.0	0.86	2.7	2.3
KEF-8	FAN	2	HP	3.4	460.0	3.0	0.86	2.7	2.3
KEF-9	FAN	2	HP	3.4	460.0	3.0	0.86	2.7	2.3
KEF-10	FAN	5	HP	7.6	460.0	3.0	0.90	6.1	5.4
KEF-11	FAN	$71 / 2$	HP	11.0	460.0	3.0	0.91	8.8	8.0
KEF-12	FAN	3	HP	4.8	460.0	3.0	0.88	3.8	3.4
KEF-13	FAN	5	HP	7.6	460.0	3.0	0.90	6.1	5.4
KEF-14	FAN	2	HP	3.4	460.0	3.0	0.86	2.7	2.3
KEF-15	FAN	5	HP	7.6	460.0	3.0	0.90	6.1	5.4
AHUS								166.1	145.2
AHU-1	AIR HANDLING UNIT	60	HP	77.0	460.0	3.0	0.95	61.3	58.3
AHU-1	AIR HANDLING UNIT	(3) 75	HP	288.0	460.0	3.0	0.95	229.5	218.0
AHU-2	AIR HANDLING UNIT	60	HP	77.0	460.0	3.0	0.95	61.3	58.3
AHU-2	AIR HANDLING UNIT	(3) 75	HP	288.0	460.0	3.0	0.95	229.5	218.0
AHU-3	AIR HANDLING UNIT	60	HP	77.0	460.0	3.0	0.95	61.3	58.3
AHU-3	AIR HANDLING UNIT	(3) 75	HP	288.0	460.0	3.0	0.95	229.5	218.0
AHU-4	AIR HANDLING UNIT	60	HP	77.0	460.0	3.0	0.95	61.3	58.3
AHU-4	AIR HANDLING UNIT	(3) 75	HP	288.0	460.0	3.0	0.95	229.5	218.0

TABLE 2.7 (CDNT.)

TABLE 2.7 (CDNT.)

Service Entrance Size

Service Entrance Size: Summary Table				
Methad	kVA	Amperage at 480V	Main Breaker (1) Size	Main Breaker (2) Size
Schematic	4428.00	6658	400]A	3010A
Design Development	8078.13	9716	50] ${ }^{\text {a }}$	5 Cl A
CD Loads	3120.60	3120.6	20]	20] ${ }^{\text {a }}$
	-	-	30][A	

To size the service entrance for GСᄃ, three different methods were used; I) sizing with Schematic information, 2) sizing with Design Development information, and 3) sizing with Construction Document information. The results from the three methods were varied in the final size of circuit breakers for two main switchboards (as seen in TABLE 2.8).

The largest breaker size is required from the Design Development process; which is due to the overcompensation used during earlier phases to prevent from under-sizing equipment. In reference to my method, the large size could have also resulted from high demand factors; I assumed I for each load except receptacles.

The smallest main breaker size is required from the Construction Document process. This is standard for electrical design, where actual loads (and respective breaker sizes) decrease as the design becomes more detailed. Specific laading schedules alsa help detail exact equipment, which validates using smaller sized breakers. This also is a result of using conservative demand factors to on each type of load. (In this case, it should alsa be noted that lighting and receptacle loads are the same as in the Design Development method, as instructed by the Electrical Adviser at The Pennsylvania State University.)

In the current design, the main breakers are used for the two switchboards in GC[; this could be due to compensation for growth, as seen in spare circuit breakers on riser diagrams and single line diagrams.

Service Entrance Size: Schematic			
Space Type	Area	VA/ft^2	kVA
Classroom/Dfice ${ }^{\text {a }}$	369.000	12	4428
Total Amperage © 480才			6658
Size of Service Entrance Dne			40 [0A
Size of Service Entrance Two			3 CDCA
8: Since Building is either college classrooms or offices; which have the same VA/t ${ }^{\wedge}$ 2, the total SF of the building was used to calculate Service Entrance Size ii. Assumed 25\% growth on final sizes			

TABLE 2.4

Service Entrance Size: Design Development				
Laad Type	Square Foutage	VA/ft^2	Demand Factor	kVA
Lighting	369.000	3	1	1107
Receptacle	369.000	1		189.5
Mechanical	369,00]	12	1	4428
Fans	369,000	2	1	738
Total kVA				8078.125
			Total Amperage © 480V	9715
			Size of Service Entrance Dne	50] ${ }^{\text {a }}$
			Sizz of Service Entrance Two	500 ${ }^{\text {a }}$
i. Assumed 25\% growth on final sizes				

TABLE 2.1 I

Service Entrance Size: CD Loads			
Load Description	Demand Factor	Luad (kW)	Demand Load (kVA)
Lighting	0.64	1107	788.48
Receptacle	0.64	189.5	121.28
Laboratory	0.80	144.5	115.60
Plumbing	0.80	50.9	40.72
Pumps	0.80	30.5	245.20
Fans	0.80	145.2	IIE.16
AHUs	0.80	1105.1	884.08
Elevators and Escalators	0.80	331.2	264.96
		Total $\mathrm{KVA}{ }^{\text {i }}$	3120.60
		rage ${ }^{\text {a }}$ 480V	3753
	Size of	ntrance Ine	20]0A
	Size of	ntrance Two	20] ${ }^{\text {a }}$
$0.64=.8$ * .8 (assumed for co ii. Assumed 25\% growth on fina	tinuous load sizes		

TABLE 2.11

Environmental Stewardship Design

LEED ${ }^{\text {® }}$ Gold Rating
To develop high esteem for the new campus in downtawn New Haven, CT; publicizing and reinforcing "green" attribute is already successful (even in pre-construction). Integration of Photovaltaic panels on the rouf will collect solar power that will supplant power from the grid, and in over-praduction scenarios, transfer power back to the grid.

Lighting Equipment

Integral daylight sensars-in conjunction with all luminaires within I5' of windows-have the potential to eliminate a percentage of electric light used and therefore power supplied to those fixtures. Also, occupancy (infrared sensars) sensors and time clocks regulate and manage the power provided to various luminaires to eliminate unnecessary use of electric lighting load.

Design Issues

Being rated at the LEED ${ }^{\text {® }}$ Gold standard, intense energy modeling was required to record and verify building consumption and the proper integration of systems to maintain a balance within the building. For example, lighting loads were reduced to reduce power supplied to mechanical equipment.

Communication Systems

Fire Alarm

The fire alarm system is a non-coded addressable system, with automatic sensitivity control of certain smake detectors and multiplexed signal transmission, dedicated to fire-alarm service only. The alarm signal is initiated by one or more of the following systems located throughout the building; manual stations, heat detectors, smoke detectors, heat detectors (elevatar shaft and pit), and duct smake detectars.

Telecammunication

The main communication rooms in FCC are located in the basement of the North tower. Six server racks and two video distribution system racks are located in the main room. Ladder racks distribute data vertically to three telecommunication rooms on each floor and cable trays allocate data horizontally across the floors. These distribution systems feed data outlets, speakers, and other audio-visual devices.

Appendix A:
 Cut Sheets

WORLDWIDE PARTNER
\square SITESEARCH HOME *PRODUCTS EDUCATION/RESOURCES UGHTINGAPPUCATIONS

Where to Buy I FAOsI Contad Us I EilteNet
Products $>$ Ballasts $>\underline{\text { High Intensity D ischarge }>\text { Ceramic Metal Halide }>87490}$
87490 - GEMH20-MLF-120
GE HID UltraMax ${ }^{\text {mM }}$ ElectronicLowFrequency Ballast

- Light-meight, LowP rofile Housing
- Superior lowfrequency square wave frequency design
maximizes performance and life of ceramic metal halide
lamps.
- Ultra slim can size for fixture design flexibility

http ://genet.gelighting.com/LightProducts/Dispatcher?REQUEST=BALLASTSPECPAG... 10/24/2008

Standard Package	Case	
Standard Package GTIN	10043168874905	
Standard Package Quantity	12	
Sales Unit	Case	
No Of Items Per Sales Unit	1	
No Of Items Per Standard Package	12	
UPC	043168874908	

NOTES

- 200C rated lead wires
- Housing meets UL94V0 flame retardan
- Meets IEC and ANSI requirements for power factor for Task and Downlighting
- Short Circuit Protection
- Do not connect brown or red wires to ground

ADDITIONAL RESOURCES
Catalogs
Testimonials
Disposal Policies \& Recycling Information

FILURE B. 2

FIIURE B. 3

FIGIRE B. 4

ADVANCE

O'HARE INTERNATIONAL CENTER - 10275 WEST HIGGINS ROAD - ROSEMONT, IL 60018 05/15/03 Customer Support/Technical Service: Phone: 800-372-3331 - Fax: 630-307-3071

Appendix C: Citations

[^0]
[^0]: ${ }^{\text {i }}$ Information provided in "Utility Company Information" is taken from a Ul| description
 ${ }^{\text {i" I Information provided in "Dvercurrent Devices" is taken from specification section IG44| switchboards and IG442 Panelboards }}$
 iii Information provided in "Solar Panels" is taken from specification section I6P10 Solar Photovoltaic Systems
 iv Information provided in "UPS System" is taken from specification section I6264 Static Uninterruptible Power Supply Systems

